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Note 

New Method to Evaluate Atomic Electron- Repulsion Integrals 

1. INTRODUCTION 

In atomic electronic structure calculations by orbital methods, the electron- 
repulsion integrals over orbitals a, b, c, and d may be expressed as [ 11: 

(41) c(l)1 G’ lW)42)) 

= c cktl,, m,; I,, m,) ck(ld, md; lb, %) Rk(aclbd), 
k 

(1) 

where the cks are Condon-Shortley coupling coefficients and the radial integrals 
Rk(ac/bd) are given by 

Rk(ac/bd) = Jo= dr,r~R,(r,) R,(r,) Jam dr,r:Rb(r2) Rd(r2)rk,/r”,“’ (2) 

The term r”, /ry ’ in the right side of (2) originates in Legendre’s expansion for the 
reciprocal of the inter-electronic distance, r Al. 

Rk(ac/bd) integrals can be obtained analytically for a variety of radial orbitals. 
In particular, accurate and efficient formulas for calculating (2) using Slater-type 
radial functions, 

R, = N,+- Ie-za’ (3) 

Iv,= (22,)“2+“0 [(2n.)!]-“2, (4a) 

have been given [2], although their use for high values of n, and Z, must be 
approached with some care because of arithmetic overflows and underflows that 
may occur in the evaluation of the normalization constant N, and in calculating the 
Rk integrals (2) before normalization. In what follows, Eq. (4a) will be generalized 

N, = (2zJ1’2+“.[T(2n, + l)] -1’2 (4b) 

to account for non-integer quantum numbers n,. 
The right side of (2) can also be evaluated by means of a Gauss-Laguerre 

numerical quadrature. All radial integrals arising from a given set of Slater-type or 
related radial orbitals can be evaluated close to full accuracy (14 figures) using a 
unique set of 80 Gauss-Laguerre quadrature points [3] in the r, axis obtained by 
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considering the position of the maxima and inflexion points of the various base 
functions; between 3 and 5 quadrature points in the r2 axis are needed for each 
point in the ri axis. 

In this article we discuss an alternative numerical method which gives com- 
paratively accurate results using only about 40 basis-set-independent integration 
points, and which is particularly useful when the traditional Legendre representa- 
tion of r~l is substituted by a physically more meaningful Taylor-series expansion 
[4]. A Taylor-series expansion of r~’ may be written as 

r;’ = 1 G,(r,, r2; q)(q - cos ~12Y’, (5) 
IPI=0 

GA-, , r2; 4) = C(rl - r212 + 2( 1 - 9) rl r21 p”2fm Y”, (6) 

f, = (- 1)” (2m - 1)!!/(2%!), (7) 

Y = 2r1r2/C(rl -r2)* + 2(1 - 4) v21. (8) 

Equation (5) can be generalized by taking different qi values for corresponding 
intervals [ai, bi] defining a particular range of cos 13,~. 

A new method [4, 51 for atomic electronic structure calculations seeking to 
overcome the convergence problem of configuration interaction calculations 
makes use of well-defined truncations of expansion (5) about several values of the 
parameter q. If the series (5) is truncated at m = n, the new (truncated) Taylor series 
may be rewritten in terms of Legendre polynomials as 

k=O 

, r,; n; q) Pdcos 012), (9) 

T(k,m)= f (-l)i 7 
0 

D(k, i)q'"-", 

i=O 

where the D(k, i) are expansion coefficients for the powers of cos e12 in terms of 
Legendre polynomials, 

cos’ e,, = D(k i) p,(cos o,,), (12) 
k=mod(i,2)( .2) 

and f, and y are given by (7) and (8), repectively; ( ,2) means that the corre- 
sponding running index has a stride of two. 

In Eq. (l), the traditional Rk radial integrals may now be replaced by Tk 
integrals given by 

TkWW = fom dr,rfR,(rl) R,(r,) fom dr2r:&(r2) 
xRd(r2)Hk(r,7 r2;n; 4), (13) 
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where the regular function H,(r, , r2 ; n; q) replaces the physically ill-behaved term 
r”, /ry ‘. 

Equation (1) may be generalized [6], 

(41) c(l)1 riil IW) 42)) =C ck(L m,; L 4.1 

X Ck(l,, md; lt,, mb) Zk(4W, (14) 

Zk(4W= lom drlr~R,(rl) R,(rl) lom dr2ri&(rJ Rd(rZ) 

xw ' 
2 

P (x)rildx, k 
-I 

where the integration variable x is for cos 8,,. Equations (14)-( 15) open new inter- 
esting possibilities [6]. 

In particular, Eq. (5k(8) may now be used for N, intervals [ai, bi] and corre- 
sponding qi parameters spanning the full range of x between - 1 and 1 in (15), 
yielding 

Zk(ac/bd) = 3 2 Zy(ac/bd) A,,(q,), 
i=l m=O 

(16) 

Zy(ac/bd) = jam dr,rfR,(r, R,(r,) 

s 

a, 
X dr2riMrJ Rd(r2) Gm(rlT r2; qi), (17) 

0 

Ak,(qi)=~l*'Pk(X)(qi-X)m dX. 
a, 

(18) 

Similar equations are obtained when (9)-( 11) are replaced in (15) instead of 
(5~(8). In both cases the basic numerical method is identical to the one to be used 
to evaluate Eq. (2). 

The numerical method is discussed in Section 2. Results for the traditional radial 
integrals Rk are given in Section 3. The evaluation of the new radial integrals Zk is 
taken up in Section 4 and conclusions are given in Section 5. 

2. METHOD 

If the variables ri and r2 (each ranging from 0 to co) are substituted by circular 
coordinates p and a (also known as hyperspherical coordinates [7]), 

r,=pcosa 

r2 = p sin a 

dr, dr, = p dp da, 
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the radial integral Rk in (2) is given by 

Rk(ac/bd) = N,N,N,N, J:” da co~“a~~~-’ a sin”“+ka 

+ jnTI da cos”ac+ ka sin”“- k ~ ‘a} 

X 
s 

O3 p(n,,+nhd)e-[z,COsU+ZbdSinalP dp 
9 (19) 

0 

in a basis of Slater-type radial orbitals, where nac = n, +ncr nbd = nb + ndr Z,,= 
Z, + Z,, and Z,, = Z, + Z,. Notice that the principal quantum numbers in Eq. (3) 
only need to satisfy n, 20, viz., OS, Op, etc., orbitals are allowed, which is not 
possible in the conventional approach using r1 and r2 coordinates without recurring 
to the complicated exponential integrals E,(r). After integrating over p, Rk becomes 

cos”r~ + k a SinnM- k - 1 a 

cos a + Z,, sin a](nac+nbd+ l) ’ (20) 

which can be evaluated to various accuracies by using a Gauss-Legendre 
quadrature in each of the intervals [0,7c/4] and [7c/4, n/2] for a wide range of 
principal quantum numbers n, and orbital exponents Z,, as discussed in the next 
section. 

In practice, however, straightforward use of (20) leads to arithmetic underflows 
and overflows due to the product of the four normalization constants N,N,N,N, 
(large values of principal quantum numbers and orbital exponents) and to the 
occurrence of r(nac + nbd+ 1) (large principal quantum numbers). In order to 
circumvent this problem, the definitions and scaling factors needed are 

T(n) = T(n)“*; fl,=N;/4; - - ~V,,=~V,N,; N&j = gb md 

? = Mackinac + nbd + l) Rbdy (21) 

x=&i (22) 

whence the first integrand I, of (20) may be expressed, in Fortran, as 

I, = (Tl * T2 * T2) ** 2, (23) 

where 

Tl = q coS(“cz-k-1)/2 a Sin(“bd+k)/Z a, 

T2 = x/(z,, COS C7 + zbd sin a)(nu+nbd+ ‘)14, 

(24) 

(25) 

m/91/1-17 
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and analogously for the second integrand. In this way, using standard floating point 
numbers of magnitudes between 1O-37 and 1037, up to azimuthal quantum number 
I = 12, principal quantum numbers n = 13 and orbital exponents 2 between 0.001 
and 100 can be used. For I < 12, the allowed range of n and Z values is even greater 
than that. 

3. ACCURACY FOR THE EVALUATION OF Rk(ac/bd)I~~~~~~s 

In Table I we show the accuracy of selected Rk(ac/bd) integrals involved in 
single-configuration self-consistent field calculations of neutral Ar as a function 
of the number of Gauss-Legendre quadrature points. It is seen that 16-point 
quadrature formulas in [0,7r/4] and [7r/4,7r/2] are adequate for orbital exponent 
optimizations, and’ 20-point formulas should be considered a safe compromise. In 
general, final results could always be obtained by using, say, 32-point Gauss- 
Legendre quadratures. 

4. EVALUATION OF Zk(ac/bd) INTEGRALS 

The evaluation of Zk(uc/bd) integrals of Eq. (16) requires the computation of 
quantities Z”(uc/bd), Eq. (17), and A,,(q,), Eq. (18). In order to evaluate Zy(ac/bd) 
one follows a similar procedure as for Rk(uc/bd) integrals, Eq. (20), but now 
integrands such as I,, defined by Eq. (23), must be multiplied by a factor F which 
is equal to the value of the regular function G,(p, cr; qi) = G,(r , , r2 ; qi) after 

TABLE I 

Accuracy of Various Rk(ac/6d) Integrals as a Function of the Number of Gauss-Legendre Quadrature 
Points Using Eq. (20) as a Starting Point 

Rk(acjbd) Full value 12 16 20 24 28 

11.25 15 17 17 17 17 
2.970703125 7 10 14 17 17 
0.43505859375 13 17 17 17 17 
0.7744140625 10 16 17 17 17 
0.449661480468480 13 17 17 17 17 
0.0407867431640625 11 16 17 17 17 
0.035282439634886999 11 16 17 17 17 
0.017915435669528113 12 17 17 17 17 
0.516276041666666667 10 15 16 16 17 
0.272526041666666667 11 15 16 16 16 

Note. The orbital exponents are Z,, = 18, Z, = 16, Z,, = 3, Z,, = 7, Z,, = 2. The number of signifi- 
cant figures achieved is under the columns marked 12, 16, 20, 24, and 28, denoting the number of 
quadrature points in [0, n/4] and in [x/4, n/2]. 
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integration over p and for given values of c1 and qt. These factors F are basis-set- 
independent and hence they are evaluated only once for the whole calculation. 

Also, in order to keep arithmetic within bounds, it is necessary to multiply y in 
Eq. (8) by (ai - qi) and, correspondingly, to divide (qi- x) by the same quantity 
in Eq. (18). In this way, the evaluation of (18) with a 1Zpoint Gauss-Legendre 
quadrature offers no problems. 

5. CONCLUSIONS 

Radial electron-repulsion integrals Rk(ac/M) can be accurately evaluated by 
integrating the right side of (20) with 20-point Gauss-Legendre quadratures in each 
of the intervals [0,7r/4], [7r/4, 7r/2], and introducing auxiliary scaling factors given 
by Eqs. (21t(22) and used in Eqs. (23)-(25). For I= 12, up to n = 13 principal 
quantum numbers and orbital exponents between 0.001 and 100 can be handled in 
usual floating point Fortran. The new method allows the introduction of non- 
integer principal quantum numbers and, also, principal quantum numbers smaller 
than 1+ 1, which might be useful in atomic structure calculations beyond Hartree- 
Fock. The main motivation, however, was to obtain accurate quadratures to 
evaluate electron repulsion integrals when using various types of representations 
of r$, as exemplified by Eq. (5). Also, novel correlation factors, such as any 
reasonable function depending upon cos 8,, , can be introduced through Eq. (18) at 
no extra computational cost. 
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